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Abstract. We study the influence of the short-ranged Hubbard correlation U between the conduction
electrons on the Cooper pair formation in normal (s-wave) superconductors. The Coulomb correlation
is considered within the standard second order perturbation theory, which becomes exact in the weak
coupling limit but goes beyond the simple Hartree-Fock treatment by yielding a finite lifetime of the
quasiparticles at finite temperature. An attractive pairing interaction V , which may be mediated by the
standard electron-phonon mechanism, is considered between nearest neighbor sites. A critical value Vc for
the attractive interaction is required to obtain a superconducting state. For finite temperature T < Tc

a gapless superconductivity is obtained due to the finite lifetime of the quasiparticles, i.e. the Coulomb
correlation has a pair-breaking influence. The energy gap ∆ and Tc depend very sensitively on U, V and
band filling n and develop a maximum away from half filling as function of n. The ratio 2∆(0)/Tc varies
with n, being higher than the BCS value near half filling and reaching the BCS value for lower n.

PACS. 74.20.Fg BCS theory and its development – 71.27.+a Strongly correlated electron systems; heavy
fermions – 71.10.-w Theories and models of many electron systems

1 Introduction

We study an extended Hubbard model (EHM) with an on-
site Coulomb repulsion U and an attractive inter-site inter-
action V, which is restricted to nearest neighbors only, for
a review see reference [1]. The effects of inter-site pairing
and the resulting anisotropy and symmetry of the super-
conducting order parameter have been investigated [2–9].
It has been shown that a BCS-like decoupling but with
highly anisotropic pairing interaction may yield values of
the ratio 2∆(0)/Tc, which are much larger than the stan-
dard BCS value 2∆(0)/Tc = 3.53 obtained for an isotropic
(k-independent) order parameter. In the existing litera-
ture on the EHM so far the Hubbard correlation has been
treated within the standard Hartree-Fock approximation
(HFA) [1,10], the Gutzwiller approximation[11] and the
Hubbard decoupling schemes [12–14]. But it is well-known
that for the simple Hubbard model [15–17] (without at-
tractive pairing interaction) the HFA and the Hubbard
decoupling have certain drawbacks; they do not properly
reproduce important properties like quasi-particles with
enhanced effective mass or the metal-insulator transition.
The Gutzwiller approximation contains certain aspects of
these properties at T = 0, as it yields a renormalized band
and thus a mass enhancement and a metal-insulator tran-
sition, but it cannot account for finite-temperature effects.
In this paper we apply the self-consistent second order per-
turbation theory (SOPT) to the extended Hubbard model.
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The SOPT can be considered to be the simplest systematic
extension of the standard HFA, and it is a conserving ap-
proximation, which satisfies the Fermi liquid properties,
and for the simple Hubbard model (without attractive
pairing interaction) the SOPT becomes exact in the weak-
coupling limit of small correlation U . It has been shown
in recent years that many of the most essential properties
are preserved, but practical calculations are greatly sim-
plified, if models of correlated electron systems are studied
within the limit of infinite dimensions, d→∞, introduced
by Metzner and Vollhardt [18]; for an overview see refer-
ence [19]. These simplifications arise from the fact that
the local approximation of a k-independent self-energy be-
comes exact for d→∞ [20–23], because of which also the
SOPT-calculations are much easier. By considering 1/d-
corrections it has also been shown for the simple Hubbard
model that the results for d = 3 are almost identical to
the results for d → ∞ [24] so that a d = ∞ treatment is
already sufficient to describe a three-dimensional system.
Therefore, we restrict our SOPT-studies of the extended
Hubbard model to infinite dimension, d → ∞, which is
justified at least for the purpose of a first model study.
Thus we present here the first application of the self con-
sistent SOPT, i.e. a systematic improvement of the HFA,
to the extended Hubbard model with inter-site attraction
and the first application of the – for correlated electron
systems so successful and important – d→∞ limit to the
EHM.
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2 Model

The Hamiltonian of the one band extended Hubbard
model is given by

H = Ht +HU +HV , (1)

with

Ht = t
∑
〈i,j〉
σ

c†Ri,σ
cRj ,σ − µ

∑
i,σ

nRi,σ (2)

HU =
U

2

∑
i,σ

nRi,σnRi,−σ (3)

and

HV =
1

2N

∑
k,k′,q
σ,σ′

V (q)c†k+q,σc
†
k′−q,σ′ck′,σ′ck,σ. (4)

Here nR,σ = c†R,σcR,σ and Ht describes the conduction
band with the energy dispersion ξk = εk − µ, where µ is
the chemical potential. HU denotes the on-site Coulomb-
repulsion (U > 0) between two electrons of different spin
at the same lattice site, and HV is the attractive nearest
neighbor (Vij < 0) interaction. For a d-dimensional sim-
ple (hyper)-cubic lattice and the nearest neighbor tight-
binding-approximation the conduction band dispersion
reads: εk = 2tγk with γk =

∑d
i=1 cos(kia), where a is

the lattice constant, t denotes the hopping matrix ele-
ment for nearest neighbours and d is the dimension. In
the present paper, we make the approximation of a lo-
cal (site-diagonal, i.e. k-independent) self-energy, which
is correct in the limit d → ∞. Consistent with this as-
sumption is that the density of states per spin direction
of the unperturbed noninteracting system has a Gaussian
form [18,21]: N0(ω) = 1/(

√
2πt?) exp(−(ω/t?)2/2), where

t? is determined by the scaling of the hopping term (2) in
the Hamiltonian H, so that the non-trivial limit is reached
in infinite dimensions: 2t2d = t?2 = const. We treat the
attractive inter-site interaction (4) within the generalized
Hartree-Fock decoupling with respect to anomalous ex-
pectation values

HV ∼
1
N

∑
k,k′

V (k− k′)
[
〈c†k,↑c

†
−k,↓〉c−k′,↓ck′,↑

+〈c−k′,↓ck′,↑〉c†k,↑c
†
−k,↓

]
, (5)

and neglect normal expectation values for HV , so that the
decoupling corresponds to a BCS treatment. The extended
s-wave part of the nearest neighbour pairing potential has
the following form:

V (k− k′) =
2Ves

d
γkγk′ , (6)

and consequently the energy gap ∆(k) has an extended
s-wave character: ∆(k) = ∆esγk. In the limit of infinite
dimensions the strength of the attractive nearest neighbor

interaction has to be scaled with 1/d; this scaling makes
the Hartree energy finite and all inter-site interactions can
be treated in the Hartree approximation [21]. Furthermore
the k-dependence of the anomalous Green function enters
only via the dispersion εk in d → ∞, so that only pair-
ing states having the symmetry of the lattice (extended s-
wave symmetry) are possible [25]. For the on-site Coulomb
repulsion HU (3) we go beyond the standard Hartree-
Fock (HF) approximation, since the on-site interaction
remains dynamical in d → ∞. In the HF analysis with
|V | � W (W bandwidth) simple s-wave superconductiv-
ity is possible only when |V | > U , which implies that in
our mean field analysis the system will be superconducting
only in the weak coupling regime (U � W ). Then stan-
dard perturbation theory is applicable, and the simplest
approximation beyond the (almost) trivial Hartree-Fock
approximation is the second order perturbation treatment
(SOPT) in the Coulomb correlation U .

In the large-d limit the site-diagonal (k-diagonal)
SOPT selfenergy is explicitely given by [22]

Σ(x+ iy) = Un− i sgn(y)
U2

N2

∫ ∞
0

dt e−|y|tei sgn(y)xt

×
{
B(−sgn(y)t)A2(sgn(y)t)+A(−sgn(y)t)B2(sgn(y)t)

}
,(7)

with the definitions:

A(t) = − 1
π

∫ ∞
−∞

dx ImG(x+ i0)f(x)e−itx,

B(t) = − 1
π

∫ ∞
−∞

dx ImG(x+ i0)
[
1− f(x)

]
e−itx, (8)

where f(ω) denotes the Fermi- function and n the band-
filling (per spin direction): n↑ = n↓ = n and

G(z) =
1
N

∑
k

G(k, z)

is the on-site matrix element of the (normal) Green func-
tion.

In the present paper we neglect the isotropic s-wave
pairing, which is unvavourable due to the on-site repul-
sive U , so that superconductivity in the isotropic s-wave
channel is greatly reduced or even absent. Then in the
presence of a nearest neighbor pairing the normal and the
anomalous Green functions are given by:

G(k, iωn) =
iωnZ(iωn) + ξk + χ(iωn)

[iωnZ(iωn)]2 − [ξk + χ(iωn)]2 − |∆k|2
, (9)

F (k, iωn) =
−∆k

[iωnZ(iωn)]2 − [ξk + χ(iωn)]2 − |∆k|2
, (10)

where we have used the standard decomposition of the
self-energy Σ(iωn) into its even and odd part according
to the relation Σ(iωn) = iωn[1−Z(iωn)] + χ(iωn) so that
Z(iωn) and χ(iωn) both are even functions in the Matsub-
ara frequency iωn

From this expression for the anomalous Green function
we obtain the gap equation in the weak coupling regime
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Fig. 1. Density of states N(ω) for different temperatures T
as function of frequency ω for the Coulomb correlation U = 1,
pairing interaction strength Ves = 2.4 and band-filling n = 0.4.
The inset shows corresponding HFA-results for N(ω).

(U �W ):

1
|Ves|/t?

=
1
t?β

∑
n

∫ ∞
−∞

dεN0(ε)

× ε2

[ωnZ(iωn)]2 + [ε+ χ(iωn)− µ]2 + |∆̃es/t?ε|2
(11)

where we have introduced the scaled energy gap:

∆̃es =

√
d

2
∆es. (12)

In lowest (linear) order in U one gets Z(iωn) = 1, and
χ(iωn) = Un, which corresponds to the Hartree-Fock ap-
proximation for the repulsive correlation. Then we obtain
the more familiar version of the gap equation:

1
|Ves|

=
1
t?2

∫ ∞
−∞

dεN0(ε)ε2

×
tanh

(
β
2

√
(ε− µeff)2 + |∆̃es/t?|2ε2

)
2
√

(ε− µeff)2 + |∆̃es/t?|2ε2
(13)

with an effective chemical potential µeff = µ− Un.

3 Numerical results and discussion

For the numerical calculation we set the effective band-
width t? = 1. In Figure 1 we present the density of states

N(ω) = − 1
π

ImG(ω + i0)

for different temperatures T as function of frequency ω
for the Coulomb correlation U = 1, the pairing interac-
tion strength Ves = 2.4 and band-filling n = 0.4. Such
a large value of V is needed to get superconducting solu-
tions at all for this choice of the other parameters, because
due to the anisotropy of the gap there exists a critical

∆̃es
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Fig. 2. Energy gap ∆̃es as function of temperature T for band-
filling n = 0.4 and different values of V = Ves. The solid curve
indexed with (a) corresponds to the calculation in HF approx-
imation.

value Vc, below which no superconductivity is possible.
The critical value Vc does not depend on U in HFA, but
it strongly depends on U in SOPT. The extended s-wave
gap has nodes, i.e., it vanishes for certain k-points, and
for half filling (n = 0.5) these nodes are on the Fermi
surface. For this reason the extended s-wave supercon-
ductivity is always gapless, also for vanishing correlation
U , for a half-filled band [26] and the critical Vc is largest
and thus superconductivity is most unfavourable just for
n = 0.5. For finite doping, however, i.e. away from half
filling the nodes of ∆k are not on the Fermi surface and
one obtains a superconducting gap [26] at least for zero
temperature, as in Figure 1. But the density of states is
gapless for finite temperatures T , in particular near the
transition temperature Tc, while it approaches a BCS-like
density of states for T → 0. This gapless behaviour is due
to the pair breaking effect of the dynamical Coulomb cor-
relations. A gapless density of states exists in SOPT, and
it is a consequence of the finite imaginary part of the self-
energy Σ(z) at finite T , i.e., of the quasiparticle damping.
Thus the gapless superconductivity found here is a true
correlation effect which is not obtained in the simple HFA.
In HFA one gets a true gap also at finite T < Tc, as can
be seen from the inset in Figure 1, which shows the cor-
responding HFA-result for two temperatures T < Tc.

In Figure 2 we present the order parameter ∆̃es as func-
tion of temperature. Near the transition temperature ∆̃es

shows the typical BCS behaviour ∆(T ) ∼
√

1− T/Tc. By
comparing with the corresponding HFA-result (curve a)
we see that superconductivity is suppressed and becomes
more unfavourable, if one treats the repulsive on-site cor-
relation within a dynamical approximation like SOPT.
Obviously the relative reduction of Tc is larger than the
relative reduction of ∆̃es(T = 0) between HFA- and
SOPT-result. Therefore, the ratio ∆̃es(T = 0)/Tc is even
larger within SOPT than the corresponding (already en-
larged) HFA-result.
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Fig. 3. Transition temperature Tc as a function of the pair-
ing interaction Ves (n = 0.4), Coulomb correlation U (n =
0.4, Ves = 2.4) and as function of the band-filling n (Ves = 2.4).
The curve (a) presents the calculation in HF approximation
and the curve (b) the calculation with SOPT self-energy.

In Figure 3 we present the result for the transition
temperature Tc as function of Ves, U and n. As expected
similarly as the energy gap ∆̃es also the transition temper-
ature Tc increases with Ves (upper figure) and decreases
with U (middle figure). From the lowest figure of Figure 3
we see that for this choice of V = 2.4 the transition tem-
perature Tc becomes zero for band-filling n > 0.45, and
the greatest reduction of Tc due to the Coulomb correla-
tions occurs at a band-filling of n ≈ 0.35. The transition
temperature Tc is not a monotonous function of the band-
filling n. Tc has its maximum at n ≈ 0.1 and goes to zero
for lower n. Near half-filling Tc is more strongly suppressed
than the energy gap ∆es.

In Figure 4 we show the dependence of the ratio
2∆̃es(0)/Tc on U, Ves and n. We see that for low band-
fillings the ratio has the BCS value and near half fill-
ing the ratio is enhanced. This enhancement of the ratio
2∆̃es(0)/Tc is due to the strong anisotropy of the pairing
interaction V (k−k′) and the dynamical Coulomb correla-
tion U . The effect of the Coulomb correlation can be seen
from the upper figure. The ratio 2∆̃es(0)/Tc raises with
increasing U . As function of the pairing interaction Ves

for given U (middle figure) and band-filling n the ratio is
zero unless Ves > Vc, and has a maximum at some V > Vc.
The largest values obtained in SOPT for 2∆̃es(0)/Tc are
between 16 and 20, which exceeds the corresponding HFA-
enhancement by a factor of almost 2.

4 Summary

To summarise, we have studied the extended Hubbard
model with on-site repulsive interaction (U > 0) and addi-
tional attractive nearest neighbor interaction (V < 0). We
treated the pairing interaction in the anomalous Hartree
Fock (BCS) decoupling and the Coulomb correlations in
the SOPT.

A critical value Vc of the inter-site interaction is re-
quired to obtain superconductivity at all, and this Vc de-
pends strongly on the on-site correlation U . Furthermore,
the energy gap and the critical temperature Tc depend
strongly on the band filling. For half filling, for which the
node in the extended-s-wave gap function is on the Fermi
surface, superconductivity is strongly suppressed and ex-
ists only for very large values of |V |. But away from half
filling a superconducting solution exists also for smaller
values of V , and superconductivity is most favoured at
a band filling of about n ∼ 0.1−0.2. The ratio 2∆/Tc is
strongly enhanced compared to the standard BCS result
3.53 up to values of about 15. The enhancement of the
ratio 2∆̃es/Tc is an effect of the strong anisotropy of the
pairing interaction V (k−k′) and of the Coulomb correla-
tion.

Furthermore, for finite temperature 0 < T < Tc

we find gapless superconductivity away from half fill-
ing (i.e., when the node in the gap function plays no
role). This gapless superconductivity is a correlation ef-
fect and due to the finite imaginary part, i.e. the quasi-
particle damping, obtained within the SOPT for finite T .
Comparing our SOPT-results with corresponding HFA-
results we find that the SOPT has a tendency to suppress
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Fig. 4. Ratio 2∆̃(0)/Tc as a function of the U (n = 0.4, Ves =
2.4), Ves (n = 0.4, U = 1) and band-filling n (U = 1, Ves = 2.4).
The curve (a) presents the calculation in HF approximation
and the curve (b) the calculation with SOPT self-energy.

superconductivity: it yields quantitatively smaller values
of the superconducting order parameter ∆ and critical
temperature Tc, and (in contrast to HFA) these values de-
pend strongly on U . But the most important qualitative
difference is the existence of superconductivity without a
true gap for finite T in SOPT, i.e., we obtain a gapless
density of states for temperatures 0 < T < Tc.

Our conclusion is that in the present model Coulomb
correlations play an important role for the normal and the
superconducting state, at least as far as temperatures near
the transition temperature Tc are concerned.

Our model study shows that important qualitative and
quantitative corrections have to be expected when treating
the on-site correlation in a dynamical approximation like
the SOPT beyond Hartree-Fock. Therefore, in the future
such a dynamical treatment of the correlation should also
be applied to the extended Hubbard model in realistic low
dimension in which case one can also investigate a d-wave
symmetry of the order parameter, which in d → ∞ is
impossible to describe.
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